CLASS!FICATION

CONFIDENTIAL CONFIDENTIA

50X1-HUM

CENTRAL INTELLIGENCE AGENCY INFORMATION FROM

FOREIGN DOCUMENTS OR RADIO BROADCASTS

CD NO.

COUNTRY

USSR

DATE OF

1946

SUBJECT

Scientific - Hydrology

HOW

DATE DIST.

INFORMATION

PUBLISHED

Book (480 pp)

WHERE

PUBLISHED

Leniagrad

NO. OF PAGES

DATE

PUBLISHED

1946

SUPPLEMENT TO

LANGUAGE

Russian

REPORT NO.

THIS IS UNEVALUATED INFORMATION

SOURCE

Gidrologicheskiy analiz i raschety, published by Gidrometeorologicheskoy: Izdatel'stvo,

50X1-HUM

TABLE OF CONTENTS FOR "HYDROLOGICAL ANALYSIS AND COMPUTATIONS"

Frof B. V. Polyakov Dr Moch Soi

(Approved by the Ministry of Higher Education USSR as a textbook for hydrometeorological institutes and geographical faculties of state universities.)

TABLE OF CONTENTS

X RAVY

STATE

Foreword

Introduction

Sources for Obtaining Hydrological Data

- I. Water Balance
 - Water Balance of a River Basin for a Single Year and for a Multiyear Period
 - Equation of the balance for a single year
 - 2. Equation of a multiyear water balance
 - Equation of a seasonal water balance
 - Example of a multiyear water balance for an unenclosed
 - 2. Water Balance of Draining and Nondraining Lakes
 - Water balance of a nondraining lake. Example
 - Draining lakes
 - Application of the water-balance method to the calculation of filtration from a water reservoir. Example

	CLASSIFICATION	CONFIDENTIAL	CURTIVENTIAL						
Υ	NSRB	DISTRIBUTION					_		
	↑ FBI	77		· · · · · · · · · · · · · · · · · · ·	T	i	_		

Sanitized Copy Approved for Release 20

0	O	Ņ	r	ř	n	r	M	T	١	٨	1
١,	13	10	Ţ	ž	*9	E,	î۷	3	ı	M	ŀ

50X1-HUM

- II. The Basic Information Necessary for the Calculation and Characteristics of River Flow
 - 3. Rectilinear Relationships
 - 1. Graphical relationships
 - 2. Use of the method of correlation with respect to two, three, and four variables. Example
 - 4. Selection of Curves
 - 1. Graphical methods
 - 2. Analytical methods
 - 5. Smoothing Broken Lines. Example
 - 6. Discharge Curves and Their Analysis
 - 1. Construction of curves from hydrometrical data
 - 2. Methods of constructing approximate curves
 - 7. Construction of a Typical Chronological Discharge Graph
 - 1. Construction of schematized graphs
 - The dependence of the shape of an elementary hydrograph upon the character of the water-collecting basin
 - 8. Construction of Hydroisopleths
 - Application of Curves of Assurance (Integral Distribution Curves)
 - Rules for applying distribution curves to the study of variations of hydrological characteristics
 - 2. Curves of distribution and assurance
 - 3. Gauss curves
 - 1. Pearson curves
 - 5. Sharl'ye curves
 - 6. Goodrich curves
 - Other distribution curves
 - 8. Hazen's probability grid

Conclusions

- III. Physicogeographical Flow Factors
 - 10. Precipitation
 - Influence of different factors on the magnitude of precipitation
 - 2. Measurement of precipitation
 - 3. Reducing precipitation data to a multiyear series
 - 4. Determination of the mean multiyear precipitation for a basin
 - 5. Concert of precipitation norms
 - Distribution of precipitation over the surface of the earth
 - 7. Intrayear distribution of precipitation
 - 8. Winter precipitation

- 2 -

CONFIDENTIAL

m	n	2.0	r	9	R	r	8.3	7	8	Â	ŝ
u	u		r	ĺ	U	Ľ	18		Í	n	L

CONTITUTE AT

50X1-HUM

9. Cloudrurst precipitation

10. Error in the determination of precipitation

1. Soil condensation

Conclusions

- 11. Evaporation
 - 1. Forms of evaporation and its physical nature
 - 2. Total evaporation

Conclusions

3. Evaporation from a water surface

Conclusions

- IV. Supplementary Flow Factors
 - 12. Relief
 - 13. Density of a River Network
 - 14. Size and Lape or Basin
 - 15. Soil and Vegetation
 - 1. Soil conditions
 - 2. Vegetation
 - 16. Geological and Geomorphological Conditions
 - 17. Lakes
 - 18. ramps
 - 19. Glaciers
 - 20. Permafrost
 - 21. Influence of Human Activities on Flow

Conclusions

- V. Norm of Surface Flow
 - 22. Various Flow Characteristics
 - 23. Calculation of the Flow Norm, Given Sufficient Data.
 Accuracy of Flow Norm, Variability of Flow Norm
 - 24. Calculation of the Flow Norm From a Short Series of Observations
 - Increasing the accuracy of the mean flow obtained from a short series with the help of flow data for a neighboring river
 - Increasing the accuracy of the mean flow obtained from a short series with the help of meteorological data

- 3 -

CONFIDENTIAL

CÕ	H	Dī	W	1	<u>}.L</u>
----	---	----	---	---	------------

50X1-HUM

- 25 Approximate Estimation of the Flow Norm With No Data Available
 - Map of the isolines of mean multiyear flow moduli and determination of the flow norm from it. Example
 - 2. Formula for calculating the flow norm of lowland rivers
 - Method of quasiconstants
 - L Peculiarities in calculating the flow norm of mountain rivers
 - Approximate estimation of the flow norm by preliminary survey of rivers

Conclusions

- VI. Variations in the Yearly Flow
 - 26. Calculation of Variations in the Yearly Flow When a Series Is Available
 - 1. Finding the parameters of curves of assurance
 - 2. Construction of the theoretical curve. Example
 - 3. Approximate calculations
 - E. Change in the coefficient of variation for the territories of the USSR
 - 27. Calculation of Flow Variations When a Short Series Is Available
 - 28. Calculation of Flow Variations When a Series of Observations Is Not Available
 - 29. Accuracy of Flow Determination for a Given Assurance (Integral Distribution) by Means of Statistical Parameters
 - 1. The Bil'nevich graphs
 - 2. The Kritskiy-Menkel' formula

Conclusions

VIT. Mean Flow

- 30. Characteristics and Factors of Mean Flow
- 31. Infiltration Into the Ground and Feeding of Rivers
- 32. Change in the Moisture of Soils
 - 1. Connection of the roisture of soils in various layers
 - 2. Normal moisture of soils
 - 3. Moisture of soils at different seasons
 - 4. Connection of moisture with hydrothermic coefficients
 - 5. General course of seasonal variation of soil moisture
 - Chargeableness of soil moisture
 - 7. Rate of displacement of moisture in soil
 - . Water balance of soils
 - Utilization of the water-balance equation for calculating total evaporation
 - 10. Phases of movement of underground waters
 - 11. Passability of territory

CONFIDENTIAL

[n		ÖEN	1	AL
----	--	-----	---	----

50X1-HUM

- 33. Alteration of Moisture Reserve in a Basin
- 34. Underground Flow
 - 1. Underground tributary of a river
 - 2. Underground absorption of flow
- 35. Drying-Up of Rivers
- 36. Rise in Mean Bed Level Due to Vegetation Growth and Calculation of Flow Under These Conditions
- 37. Strengthening River Lines by Constructing Water Obstacles

Conclusions

VIII. Winter Flow

- 38. Winter Feeding of a River
- 39. Decrease in Feeding During Formation of Ice Cover
- 40. Freezing of Rivers
- 41. Calculation of Winter Flow
 - 1. Winter discharge curves
 - 2. Simplified methods of calculating winter discharges
 - 3. The hydrometeorological method
- 42. Ice Pressure
- 43. Passability of Ice Cover

Conclusions

IX. High Water Flow

- 44. High Water Factors
- 45. Calculation of the Duration of High Water
- 46. Calculation of the Volume of Spring Floods
- 47. Variations of High Water

X. Seasonal Distribution of Flow

- 48. Factors Affecting the Distribution of Flow During the Year
 - 1. Influence of climate
 - 2. Influence of forest
 - 3. Influence of basin size
 - . Influence of basin shape
 - 5. Influence of the direction of the basin
 - Influence of lakes
 - 7. Influence of bogs

- 5 -

CONFIDENTIAL

C	Ω	K	ŗ	25.7	n	۲	M	T	Ì	Â	
V	U	1	ŗ	¥	U	L	Ç	ı	1	И	

50X1-HUM

8. Influence of bottom land

9. Influence of soil-geological conditions

10. Influence of relief and density of the river network

ll. Influence of glaciers

- 12. Zonal distribution of flow in different months
- 49. Various Procedures for the Characteristic of Flow Distribution
 - Method of the average year according to water volume and flow distribution
 - 2. Calculation of flow distribution in the year according

to seasons
3. Curves of assurance of daily discharges

- Construction of a schematized hydrograph. Examples of calculating flow distribution
- Preliminary survey of the seasonal flow distribution of rivers which have not been investigated

Conclusions

XI. Minimum Discharges

- 50. Territorial Distribution of Minimum Flow
- 51. Calculation of the Value of Minimum Flow

Conclusions

XTT. Maximum Discharges

- 52. Calculation of Maximum Discharges, Given a Series of Annual Maximums
 - 1. Transition from average daily maximums to period maximums
 - Calculation when the observed discharges contain a discharge whose recurrence exceeds the limits of the series
 - Peculiarities of calculating the parameters of curves of assurance for maximum discharges
 - 4. Comparison of various methods for determining maximums
 - Accuracy of calculating maximum discharges with the help of statistical parameters
- 53. Calculation of Maximum Discharges Given Little or No Data
 - 1. Genesis of maximums
 - 2. Factors affecting the formation of maximums of thaw waters

3. Intensity of thaw

- 4. Incres of thew waters
- 5. Methods of approximate calculation of maximums of thaw water
- Increasing the accuracy of thaw waters maximums by processing supplementary hydrometric data and by preliminary surveying

Conclusions

- 6 -

CONFIDENTIAL

r	Ô	3.4	Z.	Ę,	M	7	1	٨	١	
Ŀ	٠.	1.		 	٤V	3	i	ñ	à	•

TDEN	

50X1-HUM

- 54. Calculating the Maximum Discharges of Rain Water
 - 1. Method of formation of flow from rain precipitation
 - Absorption of water by soil. Flow coefficients of rain maximums
 - Investigations of cloudbursts on USSR territory
 - 4. Formulas used for calculations
 - Calculation of rain maximums from formulas containing empirical coefficients
 - Methods of calculating the maximum according to intensity of rain
 - Calculation of the drainage for foundations and water ducts for landing strips and taxi strips at airports
 - 8. A. V. Ogiyevskiy's formula
 - Increasing the accuracy of the maximums of rain waters by preliminary survey
 - Utilization of observations in openings of bridges to obtain data concerning the flow from small areas
 - 11. Computing maximums for the calculation of drainage systems
 - Calculation of mixed flow from small water-collecting areas

Conclusions

XIII. The Flow of Alluvia

- 55. Reduction of Existing Data on the Flow of Alluvia to the
- 56. Approximate Calculation of the Flow Norm of Alluvia of Uninvestigated Rivers. Map of the Erosion Coefficient
 - Characteristics of the flow of alluvia of rivers of the European USSR
 - 2. Influence of fundamental factors
 - 3. Computation formula
- 57. Considerations on the flow of bottom alluvia

Conclusions

XIV. River Reservoirs

- 58. Calculation of Losses
 - 1. Losses by evaporation
 - 2. Losses by filtration
 - 3. Losses by ice formation
 - 4. Miscelianeous losses
- Calculation of Wave Height. Calculation of Height of Breakers
- 60. Working Over of Barks After Formation of a Tributary

- 7 -

nno-	•~~		14	_
CONFIDE	NTIA	T.	Ė.,	4

50X1-HUM

- 61. Calculation of the Silting of Water Reservoirs
 - Determination of the amount of alluvia brought down by rivers
 - Determination of the amount of alluvia originating from working over of the banks
 - Determination of the volumetric weight of alluvia deposited in the water resulvoir
 - 4. Determination of the period of service of the water reservoir
- 62. Alteration of the Bed of River Sections at a Tributary and the Role of Alluvia in the Exploitation of Hydraulic Installations
 - Alteration of the conditions of sandbanks in the region where the affluent of a separate reservoir flows in
 - Alteration of the river bed in cases where a number of support installations are erected on the river
 - . Erosion of the river hed below the dam
 - 4. Calculation of erosion and deposition in the river bed
 - 5. Influence of river alluvia on the work of turbines
- 63. Changes in the Winter Conditions of a River Section After Formation of a Tributary
 - 1. Conditions of freezing of water reservoirs
 - Conditions of opening
 - 3. Planning the ice conditions of supported water races
- 64. Ice Conditions of Lower Waters
- 65. Topographical Characteristics of a Water Reservoir
 - 1. Flooding and filling
 - 2. Approximate method of constructing volume curves
- 66. Determination of the Elements of Hydrological Conditions When Water Is Released and When the Dam Breaks

Conclusions

- YV. Conditions of Levels
 - 67. Significance of Level Data in Hydrological Calculations
 - 68. Analysis of the Stability of the River Bed According to Water Measuring Observations
 - 1. Characteristics of the stability of the bed
 - 2. Methods of allowing for the deformation of the bed

Conclusions

- 8 -

50X1-HUM

XVI. Hydrological Service

- 69. Servicing the National Economy
 - 1. General aspects
 - Program of a hydrological outline for planning a hydrotechnical installation unit
 - 3. Example of a hydrological characteristic

Conclusions

70. Servicing the Rea Army

- Production of hydrological observations and investigations
- 2. Hydrometeorological service forms
- Compiling a military hydrological description of a territory and of river lines
- 4. Compiling schemes for inundating captured sections of rivers with flood waters
- Production of hydrological work in connection with the erection of permanent fortified installations
- 6. Field water supply
- 7. Forcing river lines
- 8. Utilization of waterways for river fleet actions
- Utilization of bodies of water for the construction of seaplane bases
- Some morphometric characteristics of rivers necessary for hydrological descriptions
- 11. Utilization of ice for building defense structures
- 12. Calculation of change in soil moisture

Conclusions

Cver-All Conclusions

Appendizes

- 1. Basic letter symbols in hydrometeorological calculations
- Table for calculating total monthly evaporation from watercollecting basins
- Table for construction of the Type I Pearson curve of assurance
- 4-6. Ordinates of the type III Pearson curve of assurance for different ratios of $C_{\mathbf{y}}$ and $C_{\mathbf{g}}$
 - 7. Table for constructing KLazen's grid
 - 8. Table of values of p for the formula $p = (\frac{m-0.5}{n}) \cdot 100$
 - Examples of seasonal distribution of flow for rivers of small basins within the confines of the European USSR
- 10. The significance of the parameters A and B in the formula Δ = A + B log N for determining the calculated strength of rain

-9-

COMPTDENTIAL

FEET !

Sanitized Copy Approved for Release 2011/09/28 : CIA-RDP80-00809A000600280937-1

The was a second		
CONFIDENTIAL	1. 19.	50X1-HUN

- 11. The calculated speeds of run of water along the surface drains of landing fields
- 12. Bibliography

- E N D -

- 10 -

CONFIDENTIAL

909r---